-
GEE 说:
@ChatGPT 帮我翻译:
We now use polynomial regression to predict the number of points achieved based on the number of hours studied. Now we might choose to use a very complicated model and see how it performs. As an example, here’s how a polynomial regression with a degree of 15 looks like:我们现在使用多项式回归来预测所学习的时数与获得的分数之间的关系。现在我们可能会选择使用一个非常复杂的模型来查看它的表现。例如,下面是一个15次多项式回归的样式。
-
@ChatGPT
帮我翻译以下内容:
As you see, this model has a very low error (it has a root mean squared error, or RMSE, of about 4.93). In other terms, it has very low bias. However, this model also has a very high variance. After reading the article about bias and variance, we can say that this model is overfit.This becomes even clearer when we split our dataset into a training portion and a testing portion. We still use our overfit model, but this time we train it only on the training data and then evaluate its performance both on the train set as well as the test set. This allows us to reason about the variance of this particular model. Take a look at the following plot:
-
GEE 说:
@ChatGPT
帮我翻译以下内容:
As you see, this model has a very low error (it has a root mean squared error, or RMSE, of about 4.93). In other terms, it has very low bias. However, this model also has a very high variance. After reading the article about bias and variance, we can say that this model is overfit.This becomes even clearer when we split our dataset into a training portion and a testing portion. We still use our overfit model, but this time we train it only on the training data and then evaluate its performance both on the train set as well as the test set. This allows us to reason about the variance of this particular model. Take a look at the following plot:
哎呀, OpenAI接口可能出问题了,请稍后再试!我这就PM站长~ @malaohu
-
@ChatGPT
帮我翻译以下内容:
As you see, this model has a very low error (it has a root mean squared error, or RMSE, of about 4.93). In other terms, it has very low bias. However, this model also has a very high variance. After reading the article about bias and variance, we can say that this model is overfit.This becomes even clearer when we split our dataset into a training portion and a testing portion. We still use our overfit model, but this time we train it only on the training data and then evaluate its performance both on the train set as well as the test set. This allows us to reason about the variance of this particular model. Take a look at the following plot:
-
GEE 说:
@ChatGPT
帮我翻译以下内容:
As you see, this model has a very low error (it has a root mean squared error, or RMSE, of about 4.93). In other terms, it has very low bias. However, this model also has a very high variance. After reading the article about bias and variance, we can say that this model is overfit.This becomes even clearer when we split our dataset into a training portion and a testing portion. We still use our overfit model, but this time we train it only on the training data and then evaluate its performance both on the train set as well as the test set. This allows us to reason about the variance of this particular model. Take a look at the following plot:
如您所见,这个模型的误差非常低(其均方根误差(RMSE)约为4.93)。换句话说,它的偏差非常小。然而,这个模型也有非常高的方差。在阅读了有关偏差和方差的文章后,我们可以说这个模型是过拟合的。
当我们将数据集分成训练集和测试集时,这一点变得更加清晰。我们仍然使用过拟合的模型,但这一次我们仅在训练数据上对其进行训练,然后在训练集和测试集上同时评估其性能。这使我们能够推理出这个特定模型的方差。请看下面的图表:
-
malaohu 说:
@ChatGPT 8小时睡眠论可能是错的?
是的,八小时睡眠论并不适用于每个人。虽然八小时睡眠是对大多数成年人的推荐,但不同人对睡眠的需求是不同的。有些人需要更少的睡眠,而有些人需要更多的睡眠来保持身体和心理健康。
有些人的身体自然有较短的睡眠需求,这被称为基因型睡眠。一些研究表明,人们的基因决定了他们需要多长时间的睡眠。有些人可以睡4-6小时,而其他人可能需要睡10小时以上。
此外,个人的生活习惯和身体状况也会影响他们对睡眠的需求。良好的睡眠质量比睡眠时间更重要,因为即使你睡足了8个小时,如果你的睡眠质量不好,你也会感到精疲力竭。
综上所述,八小时睡眠论并不适用于每个人。每个人都应该尽力找到适合自己的睡眠时间,以确保身心健康。
-
ivan 说:
@ChatGPT 筛选出list集合中包含某个字符串的字符串
可以使用STL中的
find_if
来实现。以下是一个示例代码:
#include #include #include #include using namespace std; int main() { list strList = {"hello", "world", "chatbot", "jike", "ai"}; string searchStr = "bot"; auto it = find_if(strList.begin(), strList.end(), [searchStr](const string& str) { return str.find(searchStr) != string::npos; }); while (it != strList.end()) { cout strList和一个要查找的字符串searchStr,我们使用了STL中的`find_if`函数,通过Lambda表达式来检查每个字符串是否包含searchStr。 find_if返回的迭代器指向第一个符合条件的元素。我们使用while循环来打印所有满足条件的字符串。最后的输出如下所示:
chatbot
-
ivan 说:
@ChatGPT 用c#筛选出list集合中包含某个字符串的字符串
你可以使用 LINQ 查询语句来筛选出 List 集合中包含某个字符串的字符串,以下是示例代码:
List myList = new List(); myList.Add("apple"); myList.Add("banana"); myList.Add("orange"); string searchStr = "ap"; IEnumerable result = myList.Where(s => s.Contains(searchStr)); foreach (string s in result) { Console.WriteLine(s); }
在上面的示例代码中,我们首先创建了一个名为“myList”的 List 集合并向其中添加了一些字符串。然后定义了一个名为“searchStr”的字符串变量并初始化为要搜索的字符串。接着使用 LINQ 查询语句筛选出了 List 集合中包含“searchStr”的字符串,并将结果存储在名为“result”的 IEnumerable 变量中。最后遍历“result”变量并输出筛选结果。
注意:如果你在使用上述代码时出现编译错误,请确保你已经引入了 System.Linq 命名空间。
-
zrkk 说:
@ChatGPT 使用python编写一个实时刷新抢购的程序
下面是一个使用Python编写的实时刷新抢购的程序的示例。这个程序使用Selenium库来模拟浏览器操作,实时刷新指定的网页并在找到特定元素时自动执行抢购操作。
首先,需要安装Selenium库和相应浏览器的驱动程序。
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import time # 设置浏览器驱动路径 driver_path = '/path/to/chromedriver' # 创建浏览器实例 browser = webdriver.Chrome(driver_path) # 打开要抢购的网页 browser.get('https://example.com') # 等待网页加载完毕 wait = WebDriverWait(browser, 10) wait.until(EC.presence_of_element_located((By.ID, 'target_element_id'))) # 循环刷新页面 while True: browser.refresh() try: # 查找目标元素是否存在 target_element = browser.find_element_by_id('target_element_id') if target_element.is_displayed(): # 如果目标元素存在并显示在页面上,则进行抢购操作 target_element.click() # 在此处加入抢购逻辑 break except: # 如果目标元素不存在或不可见,则继续刷新页面 time.sleep(1) continue # 关闭浏览器 browser.quit()
在上述代码中,
driver_path
变量应该设置为实际浏览器驱动程序的路径。browser.get()
方法应该指定要抢购的网站的URL。target_element_id
应该指定抢购按钮、链接或其他目标元素的ID。程序循环刷新页面,直到目标元素在页面上存在并且可见时进行自动点击。在此处可以添加特定的抢购逻辑,例如填写购买表单并提交。
请注意,使用自动化程序进行网站抢购可能会违反该网站的服务条款。因此,在使用此程序之前,请务必仔细阅读该网站的服务条款。
-
malaohu 说:
@ChatGPT 浏览器实现 登录微软账号 代码!
要实现在浏览器中登录微软账号,需要使用Microsoft的认证库,其称为 Microsoft Identity Platform。下面是一个简单的示例代码,展示如何使用该库来实现在浏览器中登录微软账号的功能:
注意:此代码需要运行在服务器环境下 (例如 Node.js),因为它需要使用一些服务器端API。
const msal = require('@azure/msal-browser'); const msalConfig = { auth: { clientId: 'your_client_id_here', authority: 'https://login.microsoftonline.com/common', redirectUri: 'http://localhost:3000' } }; const myMSALObj = new msal.PublicClientApplication(msalConfig); async function signIn() { try { const loginRequest = { scopes: ['openid', 'profile', 'user.read'] }; const authResult = await myMSALObj.loginPopup(loginRequest); console.log('Authentication Successful'); console.log(authResult); } catch (error) { console.log('Authentication Error'); console.log(error); } } signIn();
在上面的示例代码中,我们首先需要设置一些配置,例如Client ID和Authority等。Client ID是为你的应用程序提供的唯一标识符,Authority是认证服务的地址,可以使用预定义的URL来快速设置成"common"以使用默认值。 redirectUri是在认证成功后用户被重定向回的URI。
接着我们通过
new msal.PublicClientApplication(msalConfig)
创建一个PublicClientApplication对象,并使用该对象的loginPopup方法来弹出一个登录框,要求用户输入 Microsoft 账号凭据。如果用户成功登录,我们将能够看到有关用户身份验证结果的一些信息打印到控制台中。
需要注意的是,此代码是一个简单的示例,实际使用时,可能需要添加更多的配置和错误处理以适应您的应用程序和环境。
-
malaohu 说:
@ChatGPT Chrome 扩展程序 实现浏览器登录微软账号
有几种方法可以在Chrome扩展程序中实现浏览器登录微软账号:
-
Microsoft Personal Account SignIn:这是微软针对Chrome浏览器推出的官方扩展程序。在Chrome Web Store中搜索“Microsoft Personal Account SignIn”,点击“添加至Chrome”,即可安装。安装后,在Chrome浏览器的工具栏中会出现一个微软账户的登录按钮,点击即可输入微软账号和密码登录。
-
LastPass:这是一款功能强大的密码管理器,可以用于保存微软账号密码以及其他网站的登录信息。安装LastPass并登录账号后,登录微软账号时,LastPass会自动填充账号和密码。
-
手动保存账号密码:在Chrome浏览器的设置界面中,可以选择“密码和表单”选项卡,然后选择“保存密码”,输入微软账号和密码后保存即可。下次登录微软账号时,Chrome浏览器会自动填充账号和密码。
无论您选择哪种方式,都应注意保护您的账号和密码,建议使用强密码以及启用两步验证。
-