-
peng111说:
求高阶微分方程y”-u(1-y2)y’ +y=0,y(0)= 1,y’(0)=0的数值解,并画出解的相应图形. (μ自己设)
解:
设μ=1
此高阶微分方程化为一阶微分方程组:
$$
\begin{cases}
\frac{dx}{dt}=y\
\frac{dy}{dt}=-1(1-y^2)y+1
\end{cases}
$$初值条件:$x(0)=0,y(0)=1$
用Euler法求解:
令步长h=0.02,则
$(x_0,y_0)=(0,1)$
$(x_1,y_1)=(h,1+hy_1)$
$(x_2,y_2)=(2h,y_1+h(-1(1-y_1^2)y_1+1))$
$(x_3,y_3)=(3h,y_2+h(-1(1-y_2^2)y_2+1))$
$\cdots$
$(x_n,y_n)=(nh,y_{n-1}+h(-1(1-y_{n-1}^2)y_{n-1}+1))$
用MATLAB编程求解得:
h=0.02; x(1)=0;y(1)=1; for n=1:50 x(n+1)=x(n)+h; y(n+1)=y(n)+h*(-1*(1-y(n)^2)*y(n)+1); end x,y
结果如下:
把上述结果画在图像上:
-
guest说:
tombstone分析方法
Tombstone analysis is a method of debugging that identifies the source of a data corruption issue by tracking the changes in the data from the time it was entered into the system to the time it was corrupted. It involves identifying and examining the "tombstones" of data, which are the points in time when the data was modified or corrupted. The analysis seeks to determine the root cause of the data corruption and the sequence of events that led to it. It can be used to identify potential changes to the system or process that could prevent future data corruption.