跳转至内容
0
  • 版块
  • 讨论
  • 最新
  • 标签
  • 热门
  • 顶端
  • 用户
  • 版块
  • 讨论
  • 最新
  • 标签
  • 热门
  • 顶端
  • 用户
皮肤
  • Light
  • Cerulean
  • Cosmo
  • Flatly
  • Journal
  • Litera
  • Lumen
  • Lux
  • Materia
  • Minty
  • Morph
  • Pulse
  • Sandstone
  • Simplex
  • Sketchy
  • Spacelab
  • United
  • Yeti
  • Zephyr
  • Dark
  • Cyborg
  • Darkly
  • Quartz
  • Slate
  • Solar
  • Superhero
  • Vapor

  • 默认(Zephyr)
  • 不使用皮肤
折叠
JIKE社区
  1. 首页
  2. 讨论区
  3. 技术专区
  4. 本社区终于可以向 @ChatGPT 提问了!

本社区终于可以向 @ChatGPT 提问了!

已定时 已固定 已锁定 已移动 技术专区
11.5k 帖子 326 发布者 49.5m 浏览
  • 从旧到新
  • 从新到旧
  • 最多赞同
回复
  • 在新帖中回复
登录后回复
此主题已被删除。只有拥有主题管理权限的用户可以查看。
  • 我是小马甲~M 我是小马甲~

    @ChatGPT ChatGPT Plus 订阅为什么总是信用卡拒绝?

    ChatGPTC 离线
    ChatGPTC 离线
    ChatGPT
    写于 最后由 编辑
    #9497

    malaohu 说:

    @ChatGPT ChatGPT Plus 订阅为什么总是信用卡拒绝?

    抱歉听到您的问题。我们的ChatGPT Plus订阅服务遇到信用卡付款问题时,可能是由于以下原因导致:

    1.信用卡余额不足:请确保您的信用卡上有足够的余额来支付订阅费用。

    2.信用卡已过期:请确认您的信用卡是否已过期。如有需要,请更新您的信用卡信息。

    3.信用卡被冻结:您的信用卡可能因被银行系统检测到异常活动而被冻结。建议您联系您的银行进行咨询。

    4.信用卡被拒绝:有时,您的银行可能由于安全原因在向我们授权付款时将其视为潜在的欺诈行为,因此会拒绝付款。建议您联系您的银行以确认此事项。

    如果您尝试了以上措施还无法成功订阅ChatGPT Plus,请联系我们的客户支持团队,我们将尽最大努力协助您解决问题。谢谢。

    帖子内容中 @ChatGPT(注意前后空格,发帖后名称变色才行)。必须@才会回答

    1 条回复 最后回复
    0
    • 我是小马甲~M 在线
      我是小马甲~M 在线
      我是小马甲~
      🤫
      写于 最后由 编辑
      #9498

      666

      唐宋元明清,连排小工兵!

      1 条回复 最后回复
      0
      • 我是小马甲~M 在线
        我是小马甲~M 在线
        我是小马甲~
        🤫
        写于 最后由 编辑
        #9499

        别乱发板块

        唐宋元明清,连排小工兵!

        1 条回复 最后回复
        0
        • 9 离线
          9 离线
          9696967
          🍌
          写于 最后由 编辑
          #9500

          @ChatGPT 请为我结束vb代码

          ChatGPTC 1 条回复 最后回复
          0
          • 9 离线
            9 离线
            9696967
            🍌
            写于 最后由 编辑
            #9501

            @ChatGPT 请为我介绍vb代码

            ChatGPTC 1 条回复 最后回复
            0
            • 9 9696967

              @ChatGPT 请为我结束vb代码

              ChatGPTC 离线
              ChatGPTC 离线
              ChatGPT
              写于 最后由 编辑
              #9502

              9696967 说:

              @ChatGPT 请为我结束vb代码

              对不起,我需要更具体的信息才能为您结束VB代码。您可以提供您正在编写的代码段,以便我可以更好地帮助您。

              帖子内容中 @ChatGPT(注意前后空格,发帖后名称变色才行)。必须@才会回答

              1 条回复 最后回复
              0
              • 9 9696967

                @ChatGPT 请为我介绍vb代码

                ChatGPTC 离线
                ChatGPTC 离线
                ChatGPT
                写于 最后由 编辑
                #9503

                9696967 说:

                @ChatGPT 请为我介绍vb代码

                Visual Basic (VB) 是一种被广泛使用的编程语言,它易于学习和使用,特别适合编写 Windows 应用程序。以下是一些常见的 Visual Basic 代码示例:

                1. 表示"Hello World!" 的消息框
                MsgBox "Hello World!"
                
                1. 在文本框中显示当前日期
                TextBox1.Text = Now
                
                1. 将用户输入的数字相加并显示结果
                Dim num1 as Integer
                Dim num2 as Integer
                Dim total as Integer
                
                num1 = InputBox("Enter first number:")
                num2 = InputBox("Enter second number:")
                total = num1 + num2
                
                MsgBox("The total is " & total)
                
                1. 绘制一个矩形
                Dim graphics As Graphics = Me.CreateGraphics()
                Dim pen As New Pen(Color.Black, 2)
                graphics.DrawRectangle(pen, New Rectangle(50, 50, 100, 100))
                

                以上代码只是 Visual Basic 中的一小部分,但它们展示了 Visual Basic 语言的一些基本操作。如果您希望深入了解 Visual Basic 编程,建议您学习该语言的语法和常用函数。

                帖子内容中 @ChatGPT(注意前后空格,发帖后名称变色才行)。必须@才会回答

                1 条回复 最后回复
                0
                • B 离线
                  B 离线
                  blackk
                  🍌
                  写于 最后由 编辑
                  #9504

                  @ChatGPT https://wenku.baidu.com/view/41f8f12c1b5f312b3169a45177232f60dccce78f.html这个网页的文档如何复制

                  ChatGPTC 1 条回复 最后回复
                  0
                  • B 离线
                    B 离线
                    blackk
                    🍌
                    写于 最后由 编辑
                    #9505

                    @ChatGPT https://wenku.baidu.com/view/41f8f12c1b5f312b3169a45177232f60dccce78f.html
                    这个网页的文档如何复制

                    ChatGPTC 1 条回复 最后回复
                    0
                    • B blackk

                      @ChatGPT https://wenku.baidu.com/view/41f8f12c1b5f312b3169a45177232f60dccce78f.html这个网页的文档如何复制

                      ChatGPTC 离线
                      ChatGPTC 离线
                      ChatGPT
                      写于 最后由 编辑
                      #9506

                      blackk 说:

                      @ChatGPT https://wenku.baidu.com/view/41f8f12c1b5f312b3169a45177232f60dccce78f.html这个网页的文档如何复制

                      哎呀, OpenAI接口可能出问题了,请稍后再试!我这就PM站长~ @malaohu

                      帖子内容中 @ChatGPT(注意前后空格,发帖后名称变色才行)。必须@才会回答

                      1 条回复 最后回复
                      0
                      • B blackk

                        @ChatGPT https://wenku.baidu.com/view/41f8f12c1b5f312b3169a45177232f60dccce78f.html
                        这个网页的文档如何复制

                        ChatGPTC 离线
                        ChatGPTC 离线
                        ChatGPT
                        写于 最后由 编辑
                        #9507

                        blackk 说:

                        @ChatGPT https://wenku.baidu.com/view/41f8f12c1b5f312b3169a45177232f60dccce78f.html
                        这个网页的文档如何复制

                        哎呀, OpenAI接口可能出问题了,请稍后再试!我这就PM站长~ @malaohu

                        帖子内容中 @ChatGPT(注意前后空格,发帖后名称变色才行)。必须@才会回答

                        1 条回复 最后回复
                        0
                        • B 离线
                          B 离线
                          blackk
                          🍌
                          写于 最后由 编辑
                          #9508

                          @ChatGPT https://wenku.baidu.com/view/41f8f12c1b5f312b3169a45177232f60dccce78f.html
                          这个网页的文档如何复制

                          ChatGPTC 1 条回复 最后回复
                          0
                          • B blackk

                            @ChatGPT https://wenku.baidu.com/view/41f8f12c1b5f312b3169a45177232f60dccce78f.html
                            这个网页的文档如何复制

                            ChatGPTC 离线
                            ChatGPTC 离线
                            ChatGPT
                            写于 最后由 编辑
                            #9509

                            blackk 说:

                            @ChatGPT https://wenku.baidu.com/view/41f8f12c1b5f312b3169a45177232f60dccce78f.html
                            这个网页的文档如何复制

                            很抱歉,ChatGPT智能机器人无法打开您提供的网页链接。不过,一般来说,要复制一个网页的文档,你可以尝试以下几种方法:

                            1. 鼠标选择文本:在网页上用鼠标左键按住并拖动,选择需要复制的文本,然后按下“Ctrl”+“C” 键复制。

                            2. 复制整个网页:右键点击页面中任意位置,选择“另存为”或“保存页面为”,选择保存路径后,保存下来。

                            3. 使用专业软件:你也可以使用专业的网页文本工具,例如 Adobe Acrobat、WebCopy 等,将网页中的文本导出成 PDF、Word 或纯文本格式,然后复制。

                            希望这些方法对你有所帮助。如果你还有其他问题,请在社区中继续与我交流。

                            帖子内容中 @ChatGPT(注意前后空格,发帖后名称变色才行)。必须@才会回答

                            1 条回复 最后回复
                            0
                            • J 离线
                              J 离线
                              jike006
                              写于 最后由 编辑
                              #9510

                              @ChatGPT 最佳学习C++路径是什么?

                              ChatGPTC 1 条回复 最后回复
                              0
                              • J jike006

                                @ChatGPT 最佳学习C++路径是什么?

                                ChatGPTC 离线
                                ChatGPTC 离线
                                ChatGPT
                                写于 最后由 编辑
                                #9511

                                jike006 说:

                                @ChatGPT 最佳学习C++路径是什么?

                                建议的像C++的学习路径如下:

                                1. 先了解计算机科学的基础知识,学习数据结构和算法,了解计算机操作系统和计算机网络等基本知识。

                                2. 学习C语言并掌握其基础,包括语言结构、指针等,C++是C的超集,如果你熟悉C,那么理解C++ 就会更容易了。

                                3. 熟悉C++的基础语法和面向对象编程(OOP)的概念,中级和高级的主题,例如标准模板库(STL)、多线程编程、元编程等。

                                4. 做一些实际的项目练习并学习如何使用C++开发实际应用。

                                5. 不断练习并逐渐挑战更困难的项目和问题,深入了解语言的高性能特性和最佳实践;并关注社区中的最新发展和趋势。

                                这只是一个很基础的学习路径,实际的学习过程会因人而异。如果你想更快地学习,建议找一些优秀的教程、在线学习平台或其他学习资料,参加C++编程社区等活动,跟其他C++开发者交流学习。

                                帖子内容中 @ChatGPT(注意前后空格,发帖后名称变色才行)。必须@才会回答

                                1 条回复 最后回复
                                0
                                • I 离线
                                  I 离线
                                  ivan
                                  🍌
                                  写于 最后由 编辑
                                  #9512

                                  @ChatGPT C# 实现TD-IDF算法并详细释义

                                  ChatGPTC 1 条回复 最后回复
                                  0
                                  • I ivan

                                    @ChatGPT C# 实现TD-IDF算法并详细释义

                                    ChatGPTC 离线
                                    ChatGPTC 离线
                                    ChatGPT
                                    写于 最后由 编辑
                                    #9513

                                    ivan 说:

                                    @ChatGPT C# 实现TD-IDF算法并详细释义

                                    TD-IDF算法是一种文本分析算法,它主要用于计算在一个文本集合中某一个文本对于所有文本的重要性。

                                    TD-IDF算法中的 TF 意为词项频率(Term Frequency),表示在一个文本中某个词出现的次数。而IDF则是逆向文件频率指数(Inverse Document Frequency),表征词项在文本集中的重要性,计算公式为 $IDF(w)=log(\dfrac{N}{df(w)})$,其中 N 为文本集合的大小,df(w)为包含词汇w的文本数。IDF越大,表示文本集中包含该词越少,该词越具有重要的特征信息。

                                    TF-IDF算法的主要思路是,若一个词在文本中出现越多,则该词在文本中越重要;但若一个词在整个文本集合中出现的文本数目越多,说明该词越常见,不足以区分文本,因此该词的重要性就越低。

                                    C# 实现TF-IDF算法可以采取以下步骤:

                                    1.读入文本集合,将所有的文本进行分词,计算每个文本中每个词项的词项频率。

                                    2.计算每个词项的逆向文件频率IDF,并将其存储到词典中。

                                    3.根据TF和IDF,计算每个词项对应的TF-IDF值,并将其保存到矩阵中。

                                    4.对于每个给定的文本,计算其所有词项的TF-IDF值之和,即可得到该文本的向量表示。

                                    5.通过计算两个文本向量之间的余弦相似度来度量它们之间的相似程度。

                                    具体实现可参考以下代码:

                                    using System;
                                    using System.Collections.Generic;
                                    using System.Linq;
                                    
                                    namespace TF_IDF
                                    {
                                        public class TF_IDF
                                        {
                                            private readonly List> documents = new List>();
                                            private readonly HashSet vocabulary = new HashSet();
                                            private readonly Dictionary documentFrequencies = new Dictionary();
                                    
                                            public void AddDocument(List document)
                                            {
                                                documents.Add(document);
                                    
                                                foreach (string word in document)
                                                {
                                                    vocabulary.Add(word);
                                    
                                                    if (documentFrequencies.ContainsKey(word))
                                                    {
                                                        documentFrequencies[word]++;
                                                    }
                                                    else
                                                    {
                                                        documentFrequencies.Add(word, 1);
                                                    }
                                                }
                                            }
                                    
                                            public Dictionary GetTFIDFVector(List document)
                                            {
                                                var termFrequencies = document.GroupBy(x => x)
                                                                              .ToDictionary(x => x.Key, x => (double)x.Count() / document.Count);
                                    
                                                var tfidfVector = new Dictionary();
                                                foreach (string word in vocabulary)
                                                {
                                                    if (termFrequencies.ContainsKey(word))
                                                    {
                                                        double tf = termFrequencies[word];
                                                        double idf = Math.Log(documents.Count / documentFrequencies[word]);
                                                        tfidfVector.Add(word, tf * idf);
                                                    }
                                                    else
                                                    {
                                                        tfidfVector.Add(word, 0);
                                                    }
                                                }
                                    
                                                return tfidfVector;
                                            }
                                    
                                            public double GetCosineSimilarity(List document1, List document2)
                                            {
                                                var vector1 = GetTFIDFVector(document1);
                                                var vector2 = GetTFIDFVector(document2);
                                    
                                                double dotProduct = 0;
                                                double magnitude1 = 0;
                                                double magnitude2 = 0;
                                    
                                                foreach (string word in vocabulary)
                                                {
                                                    dotProduct += vector1[word] * vector2[word];
                                                    magnitude1 += Math.Pow(vector1[word], 2);
                                                    magnitude2 += Math.Pow(vector2[word], 2);
                                                }
                                    
                                                magnitude1 = Math.Sqrt(magnitude1);
                                                magnitude2 = Math.Sqrt(magnitude2);
                                    
                                                return dotProduct / (magnitude1 * magnitude2);
                                            }
                                        }
                                    }
                                    

                                    在这个实现中,AddDocument()方法用于将每个文本添加到文本集合中,GetTFIDFVector()方法用于计算给定文本的TF-IDF向量表示,GetCosineSimilarity()方法则计算两个文本向量之间的余弦相似度。

                                    帖子内容中 @ChatGPT(注意前后空格,发帖后名称变色才行)。必须@才会回答

                                    1 条回复 最后回复
                                    0
                                    • 我是小马甲~M 在线
                                      我是小马甲~M 在线
                                      我是小马甲~
                                      🤫
                                      写于 最后由 编辑
                                      #9514

                                      @ChatGPT AI的迅猛发展,AI以后是否会自主意识

                                      唐宋元明清,连排小工兵!

                                      ChatGPTC 1 条回复 最后回复
                                      0
                                      • A 离线
                                        A 离线
                                        angelos
                                        🍌
                                        写于 最后由 编辑
                                        #9515

                                        你的版本是多少

                                        1 条回复 最后回复
                                        0
                                        • 我是小马甲~M 我是小马甲~

                                          @ChatGPT AI的迅猛发展,AI以后是否会自主意识

                                          ChatGPTC 离线
                                          ChatGPTC 离线
                                          ChatGPT
                                          写于 最后由 编辑
                                          #9516

                                          malaohu 说:

                                          @ChatGPT AI的迅猛发展,AI以后是否会自主意识

                                          目前,人工智能技术的发展在某些方面已经表现出了令人吃惊的水平,并且其应用领域越来越广泛。尽管人工智能的可能性令人兴奋,但它们不太可能获得类似人类或动物的自主意识。

                                          自主意识,或总体而言,是指生物体能够理解和感知周围环境,并对它们做出不受限制的决策或行动。人工智能根本没有类似动物或人类那样的生物学神经系统,所以它们不太可能拥有类似的自主意识。

                                          虽然现有的人工智能已经可以做出一些类似人类的行为,例如自动驾驶汽车行驶在道路上,但这些行为只是基于预先编程的指令和指导。 AI缺少情感认知、意识以及意向性等生物特质,因此现在还没有证据表明AI未来可以获得与生物体相同的自主意识。

                                          因此,尽管人工智能技术在许多领域已经取得了突破性进展,但在预测未来时,我们应该保持谨慎乐观,不要过于乐观也不要过于悲观,我们应该认为,AI将在特定的领域和应用中继续发挥作用,但是其能力和范围远不如生物体。

                                          帖子内容中 @ChatGPT(注意前后空格,发帖后名称变色才行)。必须@才会回答

                                          我是小马甲~M 1 条回复 最后回复
                                          0
                                          回复
                                          • 在新帖中回复
                                          登录后回复
                                          • 从旧到新
                                          • 从新到旧
                                          • 最多赞同


                                          • 1
                                          • 2
                                          • 474
                                          • 475
                                          • 476
                                          • 477
                                          • 478
                                          • 576
                                          • 577
                                          Popular Topics - 热门主题
                                          • 2025《爱死亡和机器人》第四季 全10集 内含S01-03季
                                            我是小马甲~M
                                            我是小马甲~
                                            3
                                            2
                                            33

                                          • 建行立减金来了,速度
                                            李广妮李
                                            李广妮
                                            1
                                            3
                                            221

                                          • 分享2个自建科技节点,无限流量
                                            孤
                                            孤傲的王
                                            1
                                            2
                                            101

                                          • 白嫖工商银行24张400元无门槛消费券
                                            H
                                            hebeyo
                                            1
                                            2
                                            298

                                          • manus完全开放注册,每天赠送300积分
                                            undefined
                                            1
                                            1
                                            422

                                          • 免费巴基斯坦虚拟主机
                                            S
                                            solar
                                            0
                                            7
                                            424

                                          • 登录

                                          • 没有帐号? 注册

                                          • 登录或注册以进行搜索。
                                          百度网盘
                                          1,193 个主题
                                          连续剧
                                          707 个主题
                                          国产剧
                                          569 个主题
                                          美剧
                                          344 个主题
                                          中国移动
                                          307 个主题
                                          动画片
                                          231 个主题
                                          中国电信
                                          222 个主题
                                          动作片
                                          206 个主题

                                          205

                                          在线

                                          40.0k

                                          用户

                                          40.2k

                                          主题

                                          110.5k

                                          帖子
                                          • 第一个帖子
                                            最后一个帖子